243 research outputs found

    Photoluminescence Stokes shift and exciton fine structure in CdTe nanocrystals

    Full text link
    The photoluminescence spectra of spherical CdTe nanocrystals with zincblende structure are studied by size-selective spectroscopic techniques. We observe a resonant Stokes shift of 15 meV when the excitation laser energy is tuned to the red side of the absorption band at 2.236 eV. The experimental data are analyzed within a symmetry-based tight-binding theory of the exciton spectrum, which is first shown to account for the size dependence of the fundamental gap reported previously in the literature. The theoretical Stokes shift presented as a function of the gap shows a good agreement with the experimental data, indicating that the measured Stokes shift indeed arises from the electron-hole exchange interaction.Comment: 8 pages, 4 figures, LaTe

    Monte-Carlo simulations of the recombination dynamics in porous silicon

    Full text link
    A simple lattice model describing the recombination dynamics in visible light emitting porous Silicon is presented. In the model, each occupied lattice site represents a Si crystal of nanometer size. The disordered structure of porous Silicon is modeled by modified random percolation networks in two and three dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs have been studied. Radiative and non-radiative processes as well as hopping between nearest neighbor occupied sites are taken into account. By means of extensive Monte-Carlo simulations, we show that the recombination dynamics in porous Silicon is due to a dispersive diffusion of excitons in a disordered arrangement of interconnected Si quantum dots. The simulated luminescence decay for the excitons shows a stretched exponential lineshape while for uncorrelated electron-hole pairs a power law decay is suggested. Our results successfully account for the recombination dynamics recently observed in the experiments. The present model is a prototype for a larger class of models describing diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to [email protected]

    Grounding knowledge and normative valuation in agent-based action and scientific commitment

    Get PDF
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations

    Proposal for a method to estimate nutrient shock effects in bacteria

    Get PDF
    Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp.) and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525) were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A) and rich nutrient medium (TSA). The average improvement (A.I.) of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration. <br/

    Spreading order: religion, cooperative niche construction, and risky coordination problems

    Get PDF
    Adaptationists explain the evolution of religion from the cooperative effects of religious commitments, but which cooperation problem does religion evolve to solve? I focus on a class of symmetrical coordination problems for which there are two pure Nash equilibriums: (1) ALL COOPERATE, which is efficient but relies on full cooperation; (2) ALL DEFECT, which is inefficient but pays regardless of what others choose. Formal and experimental studies reveal that for such risky coordination problems, only the defection equilibrium is evolutionarily stable. The following makes sense of otherwise puzzling properties of religious cognition and cultures as features of cooperative designs that evolve to stabilise such risky exchange. The model is interesting because it explains lingering puzzles in the data on religion, and better integrates evolutionary theories of religion with recent, well-motivated models of cooperative niche construction
    corecore